Monday, September 20, 2010

STUDY ADDS NEW CLUE TO HOW LAST ICE AGE ENDED

0 comentarios

As the last ice age was ending, about 13,000 years ago, a final blast of cold hit Europe, and for a thousand years or more, it felt like the ice age had returned. But oddly, despite bitter cold winters in the north, Antarctica was heating up. For the two decades since ice core records revealed that Europe was cooling at the same time Antarctica was warming over this thousand-year period, scientists have looked for an explanation.

A new study in Nature brings them a step closer by establishing that New Zealand was also warming, indicating that the deep freeze up north, called the Younger Dryas for the white flower that grows near glaciers, bypassed much of the southern hemisphere.

“Glaciers in New Zealand receded dramatically at this time, suggesting that much of the southern hemisphere was warming with Antarctica,” said study lead author, Michael Kaplan, a geochemist at Columbia University’s Lamont-Doherty Earth Observatory. “Knowing that the Younger Dryas cooling in the northern hemisphere was not a global event brings us closer to understanding how Earth finally came out of the ice age.”

Ice core records show that warming of the southern hemisphere, starting 13,000 years ago, coincided with rising levels of the heat-trapping gas, carbon dioxide. The study in Nature is the first to link this spike in CO2 to the impressive shrinking of glaciers in New Zealand. The scientists estimate that glaciers lost more than half of their extent over a thousand years, and that their creep to higher elevations was a response to the local climate warming as much as 1 degree C.

To reconstruct New Zealand’s past climate, the study’s authors tracked one glacier’s retreat on South Island’s Irishman Basin. When glaciers advance, they drag mounds of rock and dirt with them. When they retreat, cosmic rays bombard these newly exposed ridges of rock and dirt, called moraines. By crushing this material and measuring the build-up of the cosmogenic isotope beryllium 10, scientists can pinpoint when the glacier receded. The beryllium-10 method allowed the researchers to track the glacier’s retreat upslope through time and indirectly calculate how much the climate warmed.

The overall trigger for the end of the last ice age came as Earth’s orientation toward the sun shifted, about 20,000 years ago, melting the northern hemisphere’s large ice sheets. As fresh melt water flooded the North Atlantic Ocean, the Gulf Stream weakened, driving the north back into the ice age. During this time, temperatures in Greenland dropped by about 15 degrees C. For years, scientists have tried to explain how the so-called Younger Dryas cooling fit with the simultaneous warming of Antarctica that eventually spread across the globe.

The Nature paper discusses the two dominant explanations without taking sides. In one, the weakening of the Gulf Stream reconfigures the planet’s wind belts, pushing warm air and seawater south, and pulling carbon dioxide from the deep ocean into the air, causing further warming. In the other, the weakened Gulf Stream triggers a global change in ocean currents, allowing warm water to pool in the south, heating up the climate.

Bob Anderson, a geochemist at Lamont-Doherty who argues the winds played the dominant role, says the Nature paper adds another piece to the puzzle. “This is one of the most pressing problems in paleoclimatology because it tells us about the fundamental processes linking climate changes in the northern and southern hemispheres,” he said. “Understanding how regional changes influence global climate will allow scientists to more accurately predict regional variations in rain and snowfall.”

(Photo: Aaron Putna)

Columbia University’s Lamont-Doherty Earth Observatory

MAGNETISM'S SUBATOMIC ROOTS

0 comentarios
The modern world -- with its ubiquitous electronic devices and electrical power -- can trace its lineage directly to the discovery, less than two centuries ago, of the link between electricity and magnetism. But while engineers have harnessed electromagnetic forces on a global scale, physicists still struggle to describe the dance between electrons that creates magnetic fields.

Two theoretical physicists from Rice University are reporting initial success in that area in a new paper in the Proceedings of the National Academy of Science. Their new conceptual model, which was created to learn more about the quantum quirks of high-temperature superconductors and other high-tech materials, has also proven useful in describing the origins of ferromagnetism -- the everyday "magnetism" of compass needles and refrigerator magnets.

"As a theorist, you strive to have exact solutions, and even though our new model is purely theoretical, it does produce results that match what's observed in the real world," said Rice physicist Qimiao Si, the lead author of the paper. "In that sense, it is reassuring to have designed a model system in which ferromagnetism is allowed."

Ferromagnets are what most people think of as magnets. They're the permanently magnetic materials that keep notes stuck to refrigerators the world over. Scientists have long understood the large-scale workings of ferromagnets, which can be described theoretically from a coarse-grained perspective. But at a deeper, fine-grained level -- down at the scale of atoms and electrons -- the origins of ferromagnetism remain fuzzy.

"When we started on this project, we were aware of the surprising lack of theoretical progress that had been made on metallic ferromagnetism," Si said. "Even a seemingly simple question, like why an everyday refrigerator magnet forms out of electrons that interact with each other, has no rigorous answer."

Si and graduate student Seiji Yamamoto's interest in the foundations of ferromagnetism stemmed from the study of materials that were far from ordinary.

Si's specialty is an area of condensed matter physics that grew out of the discovery more than 20 years ago of high-temperature superconductivity. In 2001, Si offered a new theory to explain the behavior of the class of materials that includes high-temperature superconductors. This class of materials -- known as "quantum correlated matter" -- also includes more than 10 known types of ferromagnetic composites.

Si's 2001 theory and his subsequent work have aimed to explain the experimentally observed behavior of quantum-correlated materials based upon the strangely correlated interplay between electrons that goes on inside them. In particular, he focuses on the correlated electron effect that occur as the materials approach a "quantum critical point," a tipping point that's the quantum equivalent of the abrupt solid-to-liquid change that occurs when ice melts.

The quantum critical point that plays a key role in high-temperature superconductivity is the tipping point that marks a shift to antiferromagnetism, a magnetic state that has markedly different subatomic characteristics from ferromagnetism. Because of the key role in high-temperature superconductivity, most studies in the field have focused on antiferromagnetism. In contrast, ferromagnetism -- the more familiar, everyday form of magnetism -- has received much less attention theoretically in quantum-correlated materials.

"So our initial theoretical question was, 'What would happen, in terms of correlated electron effects, when a ferromagnetic material moves through one of these quantum tipping points?" said Yamamoto, who is now a postdoctoral researcher at the National High Magnetic Field Laboratory in Tallahassee, Fla.

To carry out this thought experiment, Si and Yamamoto created a model system that idealizes what exists in nature. Their jumping off point was a well-studied phenomenon known as the Kondo effect -- which also has its roots in quantum magnetic effects. Based on what they knew of this effect, they created a model of a "Kondo lattice," a fine-grained mesh of electrons that behaved like those that had been observed in Kondo studies of real-world materials.

Si and Yamamoto were able to use the model to provide a rigorous answer about the fine-grained origins of metallic ferromagnetism. Furthermore, the ferromagnetic state that was predicted by the model turned out to have quantum properties that closely resemble those observed experimentally in heavy fermion ferromagnets.

"The model is useful because it allows us to predict how real-world materials might behave under a specific set of circumstances," Yamamoto said. "And, in fact, we have been able to use it to explain experimental observations on heavy fermion metals, including both the antiferromagnets as well as the less well understood ferromagnetic materials."

Rice University

WHY THE BIOLOGICAL CLOCK? PENN STUDY SAYS AGING REDUCES CENTROMERE COHESION, DISRUPTS REPRODUCTION

0 comentarios

University of Pennsylvania biologists studying human reproduction have identified what is likely the major contributing factor to the maternal age-associated increase in aneuploidy, the term for an abnormal number of chromosomes during reproductive cell division.

Using naturally aging mouse models, researchers showed that this basic fact of reproductive life is most likely caused by weakened chromosome cohesion. Older oocytes, or egg cells, have dramatically reduced amounts of a protein, REC8, that is essential for chromosomes to segregate correctly during the process that forms an egg. Mistakes in this process can create chromosomal abnormalities like Down syndrome.

Richard Schultz, associate dean for the natural sciences and the Charles and William L. Day Distinguished Professor of Biology in Penn’s School of Arts and Sciences, and Michael Lampson, assistant professor of biology, found that kinetochores — the protein structures that mark the site where a chromosome pair is split during cell division — are farther apart in eggs obtained from aged mice, resulting in reduced centromere cohesion. Because cohesion in these cells is established during fetal development, and must remain functional until meiotic resumption in adult life (up to ~50 years later in humans or 15 months in mice), defective cohesion is a good candidate for a process that might fail with increasing maternal age.

Researchers demonstrated that about 90 percent of age-related aneuploidies are best explained by weakened centromere cohesion. Together, these results show that the maternal age-associated increase in aneuploidy is often due to a failure to effectively replace cohesin proteins lost during aging.

“Despite the well understood nature of the issue — popularly called the biological clock — the molecular mechanisms that underpin this phenomenon have never been fully understood,” Schultz said. “Even now at the molecular level, there is no clear explanation for the loss of cohesion, in large part because almost nothing is known about how cohesion is normally maintained during the long prophase arrest in mammalian oocytes. Outstanding questions, such as the stability of cohesin complexes on chromosomes during arrest and whether new cohesins load and mature during the arrest, are now under investigation.”

To test whether cohesion defects led to the observed aneuploidies, scientists monitored chromosome segregation during the initial stages of separation, called the anaphase, in live mouse oocytes, counting the chromosomes in the resulting metaphase II eggs.

Researchers arrived at this hypothesis by identifying mRNAs that differed in oocytes of old and young mice, which suggested the spindle assembly checkpoint, kinetochore function and spindle assembly as processes that might become defective with age. Results of experiments addressed to test these possibilities suggested that they were unlikely causes. During these studies, however, the scientists noticed that sister kinetochores are farther apart in metaphase II eggs from older mice at 16 to 19 months of age compared to eggs from young mice of 6 to 14 weeks of age, a finding that drew their attention to explore reduced cohesion as a primary source for age-related aneuploidy.

The study, appearing in the journal Current Biology, was conducted by Schultz, Lampson, Teresa Chiang, Francesca E. Duncan and Karen Schindler of the Department of Biology in Penn’s School of Arts and Sciences.

(Photo: U. Penn)

University of Pennsylvania

Followers

Archive

 

Selected Science News. Copyright 2008 All Rights Reserved Revolution Two Church theme by Brian Gardner Converted into Blogger Template by Bloganol dot com