Friday, January 15, 2010


0 comentarios

University of Notre Dame astronomer Peter Garnavich and a team of collaborators have discovered a distant star that exploded when its center became so hot that matter and anti-matter particle pairs were created. The star, dubbed Y-155, began its life around 200 times the mass of our Sun but probably became "pair-unstable" and triggered a runaway thermonuclear reaction that made it visible nearly halfway across the universe.

Garnavich and his collaborators discovered the exploding star during the "ESSENCE" supernova search that identified over 200 weaker stellar explosions.

"ESSENCE found many explosions in our 6 years of searching, but Y-155 stood out as the most powerful and unusual of all our discoveries" says Garnavich.

Y-155 exploded about 7 billion years ago, when the universe was half its current age. It was discovered in the constellation Cetus (just south of Pisces) with the National Optical Astronomy Observatory's (NOAO) 4-m Blanco telescope in Chile in November of 2007 during the last weeks of the six-year ESSENCE project. The Keck 10-m telescope in Hawaii, the 6.5-m Magellan telescope in Chile, and the MMT telescope in Arizona rapidly focused on the new star, revealing that the wavelengths of light emitted from the supernova were stretched or "redshifted" by 80% due to the expansion of the universe.

Once the distance to the explosion was established, Garnavich and his collaborators calculated that, at its peak, Y-155 was generating energy at a rate 100 billion times greater than the sun's output. To do this, Y-155 must have synthesized between 6 and 8 solar masses of radioactive nickel. It is the decay of radioactive elements that drives the light curves of supernovae. A normal "Type Ia" thermonuclear supernova makes about one tenth as much radioactive nickel.

"In our images, Y-155 appeared a million times fainter than the unaided human eye can detect, but that is because of its enormous distance," Garnavich said. "If Y-155 had exploded in the Milky Way it would have knocked our socks off."

Over 40 years ago scientists proposed that massive stars could become unstable through the production of matter/anti-matter particle pairs, but only recently have large-scale searches of the sky, like the ESSENCE project, permitted the discovery of these bright, but rare, events.

Most stars bigger than 8 times the Sun's mass lose their battle with gravity and produce a "core-collapse" supernova or directly form a black hole. But there is a range of masses, 150 to 300 times the mass of the sun, where the pair-instability is thought to operate. Such massive stars are expected to form in pristine gas that has not been polluted with elements heavier than hydrogen and helium by early generations of stars. Deep imaging with the Large Binocular Telescope in Arizona shows that Y-155 originated in a very low mass host galaxy. On average, small galaxies have a low abundance of heavy atoms, so are excellent locations for pair-instability explosions.

The ESSENCE project was a six-year NOAO Survey Program led by Christopher Stubbs of Harvard University and included an international team of astronomers from the United States, Germany, Australia, and Chile. The ESSENCE project was designed to precisely map the expansion history of the universe by discovering type Ia supernovae and using them as distance markers. The ultimate goal is to understand the mysterious dark energy that is driving the accelerating expansion.

(Photo: University of Notre Dame)


0 comentarios
Knee osteoarthritis (OA) accounts for more disability in the elderly than any other disease. Running, although it has proven cardiovascular and other health benefits, can increase stresses on the joints of the leg.

In a study published in the December 2009 issue of PM&R: The journal of injury, function and rehabilitation, researchers compared the effects on knee, hip and ankle joint motions of running barefoot versus running in modern running shoes. They concluded that running shoes exerted more stress on these joints compared to running barefoot or walking in high-heeled shoes.

Sixty-eight healthy young adult runners (37 women), who run in typical, currently available running shoes, were selected from the general population. None had any history of musculoskeletal injury and each ran at least 15 miles per week. A running shoe, selected for its neutral classification and design characteristics typical of most running footwear, was provided to all runners. Using a treadmill and a motion analysis system, each subject was observed running barefoot and with shoes. Data were collected at each runner's comfortable running pace after a warm-up period.

The researchers observed increased joint torques at the hip, knee and ankle with running shoes compared with running barefoot. Disproportionately large increases were observed in the hip internal rotation torque and in the knee flexion and knee varus torques. An average 54% increase in the hip internal rotation torque, a 36% increase in knee flexion torque, and a 38% increase in knee varus torque were measured when running in running shoes compared with barefoot.

These findings confirm that while the typical construction of modern-day running shoes provides good support and protection of the foot itself, one negative effect is the increased stress on each of the 3 lower extremity joints. These increases are likely caused in large part by an elevated heel and increased material under the medial arch, both characteristic of today's running shoes.

Writing in the article, lead author D. Casey Kerrigan, MD, JKM Technologies LLC, Charlottesville, VA, and co-investigators state, "Remarkably, the effect of running shoes on knee joint torques during running (36%-38% increase) that the authors observed here is even greater than the effect that was reported earlier of high-heeled shoes during walking (20%-26% increase). Considering that lower extremity joint loading is of a significantly greater magnitude during running than is experienced during walking, the current findings indeed represent substantial biomechanical changes." Dr. Kerrigan concludes, "Reducing joint torques with footwear completely to that of barefoot running, while providing meaningful footwear functions, especially compliance, should be the goal of new footwear designs."

Physical Medicine and Rehabilitation Journal


0 comentarios
DNA that is left in the remains of long-dead plants, animals, or humans allows a direct look into the history of evolution. So far, studies of this kind on ancestral members of our own species have been hampered by scientists' inability to distinguish the ancient DNA from modern-day human DNA contamination. Now, research by Svante Pääbo from The Max-Planck Institute for Evolutionary Anthropology in Leipzig, published online on December 31st in Current Biology — a Cell Press publication — overcomes this hurdle and shows how it is possible to directly analyze DNA from a member of our own species who lived around 30,000 years ago.

DNA — the hereditary material contained in the nuclei and mitochondria of all body cells — is a hardy molecule and can persist, conditions permitting, for several tens of thousands of years. Such ancient DNA provides scientists with unique possibilities to directly glimpse into the genetic make-up of organisms that have long since vanished from the Earth. Using ancient DNA extracted from bones, the biology of extinct animals, such as mammoths, as well as of ancient humans, such as the Neanderthals, has been successfully studied in recent years.

The ancient DNA approach could not be easily applied to ancient members of our own species. This is because the ancient DNA fragments are multiplied with special molecular probes that target certain DNA sequences. These probes, however, cannot distinguish whether the DNA they recognize comes from the ancient human sample or was introduced much later, for instance by the archaeologists who handled the bones. Thus, conclusions about the genetic make-up of ancient humans of our own species were fraught with uncertainty.

Using the remains of humans that lived in Russia about 30,000 years ago, Pääbo and his colleagues now make use of the latest DNA sequencing (i.e., reading the sequence of bases that make up the DNA strands) techniques to overcome this problem. These techniques, known as "second-generation sequencing," enable the researchers to "read" directly from ancient DNA molecules, without having to use probes to multiply the DNA. Moreover, they can read from very short sequence fragments that are typical of DNA ancient remains because over time the DNA strands tend to break up. By contrast, DNA that is younger and only recently came in contact with the sample would consist of much longer fragments. This and other features, such as the chemical damage incurred by ancient as opposed to modern DNA, effectively enabled the researchers to distinguish between genuine ancient DNA molecules and modern contamination. "We can now do what I thought was impossible just a year ago – determine reliable DNA sequences from modern humans - but this is still possible only from very well-preserved specimens," says Pääbo.

The application of this technology to the remains of members of our own species that lived tens of thousands of years ago now opens a possibility to address questions about the evolution and prehistory of our own species that were not possible with previous methods, for instance whether the humans living in Europe 30,000 years ago are the direct ancestors of present-day Europeans or whether they were later replaced by immigrants that brought new technology such as farming with them.

Cell Press




Selected Science News. Copyright 2008 All Rights Reserved Revolution Two Church theme by Brian Gardner Converted into Blogger Template by Bloganol dot com