Monday, June 29, 2009

BEAKED, BIRD-LIKE DINOSAUR TELLS STORY OF FINGER EVOLUTION

0 comentarios
Scientists have discovered a unique beaked, plant-eating dinosaur in China. The finding, they say, demonstrates that theropod, or bird-footed, dinosaurs were more ecologically diverse in the Jurassic period than previously thought, and offers important evidence about how the three-fingered hand of birds evolved from the hand of dinosaurs.

The discovery is reported in a paper published in the journal Nature.

"This work on dinosaurs provides a whole new perspective on the evolution of bird manual digits," said H. Richard Lane, program director in the National Science Foundation (NSF)'s Division of Earth Sciences, which funded the research.

"This new animal is fascinating, and when placed into an evolutionary context it offers intriguing evidence about how the hand of birds evolved," said scientist James Clark of George Washington University.

Clark, along with Xu Xing of the Chinese Academy of Science's Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, made the discovery. Clark's graduate student, Jonah Choiniere, also was involved in analyzing the new animal.

"This finding is truly exciting, as it changes what we thought we knew about the dinosaur hand," said Xu. "It also brings conciliation between the data from million-year-old bones and molecules of living birds."

Limusaurus inextricabilis ("mire lizard who could not escape") was found in 159 million-year-old deposits located in the Junggar Basin of Xinjiang, northwestern China. The dinosaur earned its name from the way its skeletons were preserved, stacked on top of each other in fossilized mire pits.

A close examination of the fossil shows that its upper and lower jaws were toothless, demonstrating that the dinosaur possessed a fully developed beak. Its lack of teeth, short arms without sharp claws and possession of gizzard stones suggest that it was a plant-eater, though it is related to carnivorous dinosaurs.

The newly discovered dinosaur's hand is unusual and provides surprising new insights into a long-standing controversy over which fingers are present in living birds, which are theropod dinosaur descendants. The hands of theropod dinosaurs suggest that the outer two fingers were lost during the course of evolution and the inner three remained.

Conversely, embryos of living birds suggest that birds have lost one finger from the outside and one from the inside of the hand. Unlike all other theropods, the hand of Limusaurus strongly reduced the first finger and increased the size of the second. Clark and Xu argue that Limusaurus' hand represents a transitional condition in which the inner finger was lost and the other fingers took on the shape of the fingers next to them.

The three fingers of most advanced theropods are the second, third and fourth fingers-the same ones indicated by bird embryos-contrary to the traditional interpretation that they were the first, second and third.

Limusaurus is the first ceratosaur known from East Asia and one of the most primitive members of the group. Ceratosaurs are a diverse group of theropods that often bear crests or horns on their heads, and many have unusual, knobby fingers lacking sharp claws.

The fossil beds in China that produced Limusaurus have previously yielded skeletons of a variety of dinosaurs and contemporary animals described by Clark and Xu.

These include the oldest tyrannosaur, Guanlong wucaii; the oldest horned dinosaur, Yinlong downsi; a new stegosaur, Jiangjunosaurus junggarensis; and the running crocodile relative, Junggarsuchus sloani. (Photo: Portia Sloan)

IBEX SPACECRAFT DETECTS FAST NEUTRAL HYDROGEN COMING FROM THE MOON

0 comentarios
NASA's Interstellar Boundary Explorer (IBEX) spacecraft has made the first observations of very fast hydrogen atoms coming from the moon, following decades of speculation and searching for their existence.

During spacecraft commissioning, the IBEX team turned on the IBEX-Hi instrument, built primarily by Southwest Research Institute (SwRI) and the Los Alamos National Laboratory, which measures atoms with speeds from about half a million to 2.5 million miles per hour. Its companion sensor, IBEX-Lo, built by Lockheed Martin, the University of New Hampshire, NASA Goddard Space Flight Center, and the University of Bern in Switzerland, measures atoms with speeds from about one hundred thousand to 1.5 million mph.

"Just after we got IBEX-Hi turned on, the moon happened to pass right through its field of view, and there they were," says Dr. David J. McComas, IBEX principal investigator and assistant vice president of the SwRI Space Science and Engineering Division. "The instrument lit up with a clear signal of the neutral atoms being detected as they backscattered from the moon."

The solar wind, the supersonic stream of charged particles that flows out from the sun, moves out into space in every direction at speeds of about a million mph. The Earth's strong magnetic field shields our planet from the solar wind. The moon, with its relatively weak magnetic field, has no such protection, causing the solar wind to slam onto the moon's sunward side.

From its vantage point in space, IBEX sees about half of the moon -- one quarter of it is dark and faces the nightside (away from the sun), while the other quarter faces the dayside (toward the sun). Solar wind particles impact only the dayside, where most of them are embedded in the lunar surface, while some scatter off in different directions. The scattered ones mostly become neutral atoms in this reflection process by picking up electrons from the lunar surface.

The IBEX team estimates that only about 10 percent of the solar wind ions reflect off the sunward side of the moon as neutral atoms, while the remaining 90 percent are embedded in the lunar surface. Characteristics of the lunar surface, such as dust, craters and rocks, play a role in determining the percentage of particles that become embedded and the percentage of neutral particles, as well as their direction of travel, that scatter.

McComas says the results also shed light on the "recycling" process undertaken by particles throughout the solar system and beyond. The solar wind and other charged particles impact dust and larger objects as they travel through space, where they backscatter and are reprocessed as neutral atoms. These atoms can travel long distances before they are stripped of their electrons and become ions and the complicated process begins again.

The combined scattering and neutralization processes now observed at the moon have implications for interactions with objects across the solar system, such as asteroids, Kuiper Belt objects and other moons. The plasma-surface interactions occurring within protostellar nebula, the region of space that forms around planets and stars -- as well as exoplanets, planets around other stars -- also can be inferred.

IBEX's primary mission is to observe and map the complex interactions occurring at the edge of the solar system, where the million miles per hour solar wind runs into the interstellar material from the rest of the galaxy. The spacecraft carries the most sensitive neutral atom detectors ever flown in space, enabling researchers to not only measure particle energy, but also to make precise images of where they are coming from.

Around the end of the summer, the team will release the spacecraft's first all-sky map showing the energetic processes occurring at the edge of the solar system. The team will not comment until the image is complete, but McComas hints, "It doesn't look like any of the models." (Photo: SwRI)

Followers

Archive

 

Selected Science News. Copyright 2008 All Rights Reserved Revolution Two Church theme by Brian Gardner Converted into Blogger Template by Bloganol dot com